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Abstract. Smooth Transition Autoregressive (STAR) models are particularly effective for analysing data 

containing structural breaks. These models utilise various transition functions and threshold variables to 

accommodate distinct patterns of structural changes in time series. This study introduces asymmetry into STAR 

models by proposing a new asymmetric smooth transition function. All transition functions developed so far 

assume symmetry with respect to a threshold (in ESTAR and LSTAR) or a midpoint between two thresholds (in 

LSTAR2). However, in practical scenarios, transitions between regimes may occur at different rates, with regime 

change in one direction potentially being faster or slower than in the opposite. The proposed transition function 

includes two distinct, positive smoothness parameters. When the first parameter is larger (smaller) than the second, 

the regime transition happens more (less) rapidly, while the return transition is slower (faster). To practically 

implement the asymmetric smooth transition autoregressive (ASTAR) model and compare its performance with 

other STAR models, the estimation procedure of LSTAR in the R programming environment is modified for the 

ASTAR model. For the evaluation of the goodness of fit of the developed model on the real-life economic data, 

series of employment growth in Latvia are used. The findings suggest that the ASTAR model achieves a superior 

fit for employment growth data compared to traditional STAR models. 
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Introduction 

Time series analysis plays a crucial role in understanding and forecasting economic phenomena 

[1; 2]. Among the various models used for this purpose, Smooth Transition Autoregressive (STAR) 

models are considered as an effective tool for incorporating structural breaks and other nonlinearities by 

gradual regime switching. These models are based on transition functions that allow for smooth changes 

between different regimes, making them particularly useful for modelling data with structural shifts, 

especially in economic and financial data. 

Initially, the STAR model was proposed by Teräsvirta in 1994 [3]. It was developed as an 

alternative to self-exciting threshold autoregressive (SETAR) models introduced by Tong in 1983 [4] 

which describe instantaneous switching between regimes. A transition function is a key component of 

a STAR model that controls how the model moves between different regimes. The transition function is 

typically a smooth function of some transition variable. At the beginning, the logistic and exponential 

transition functions were used giving the model names LSTAR and ESTAR respectively [3]. Over the 

years, some more forms of the STAR model were proposed, each aiming to improve the flexibility and 

accuracy of regime-switching models. The most popular of them is the second-order LSTAR, or 

LSTAR2 [5]. A useful comparison of transition functions can be found in [6]. Besides, an absolute 

logistic smooth transition function was offered by Liews [7]. A lot of papers in this area have been 

devoted to estimation, specification, testing, comparison, forecasting, and applications of these STAR 

models [6; 8-10]. 

The mentioned traditional STAR models are based on the assumption that the transition between 

regimes has some type of symmetry. However, in many real-world scenarios, the transition between 

regimes may occur at different rates in different directions, which these models do not account for. To 

remove this limitation, the present study introduces a new model – the Asymmetric Smooth Transition 

Autoregressive (ASTAR) model. The ASTAR model incorporates asymmetry into the transition 

process, allowing for faster or slower regime switching depending on the direction of change. The 

concept of the model is not completely new, it is in compliance with prior fundamental works such as 

Terasvirta [3], providing foundational insights into the specification and estimation of STAR models. 

The ASTAR model extends the previous models by incorporating two distinct smoothness parameters, 

which allow for a more flexible modelling of asymmetric transitions in economic data. 

To implement the ASTAR model, we modify the estimation procedure of the LSTAR model in the 

R programming environment given in tsDyn package. Another modification of this procedure, for 
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LSTAR2, is described in [10]. These modifications allow us to compare the performance of ASTAR 

with other STAR models in practical applications.  

The model is tested on real Latvian economic data, namely employment growth, to evaluate its 

goodness of fit. The results of this study suggest that the ASTAR model provides a better fit for 

employment growth when compared to traditional STAR models. This finding demonstrates the 

potential of asymmetric transition models for more accurate economic forecasting and economic 

analysis. 

This paper contributes to the growing research on nonlinear time series models by providing a novel 

model for asymmetric regime shifts, with particular application to Latvian economic data. 

The rest of the paper is organised as follows. The section Materials and Methods introduces the 

STAR model, popular transition functions, and the new offered asymmetric function with a short 

description of its properties as well as the estimation procedure and the tests which help to choose the 

structure of the transition function. Also, this section describes the data used for the illustration of the 

usability of the models. The next section, Results and Discussion, presents the empirical results of the 

study. The section Conclusion contains the outcomes of the study.  

Materials and methods 

In general, a STAR model describes gradual transitions between linear autoregressive models, 

characterizing different regimes, regulated by some nonlinear transition function with values between 0 

and 1. Its common structure may be given by formula (1): 

 𝑌𝑡  =  𝛼0 +  𝛼1 𝑌𝑡−1 +  …  +  𝛼𝑝 𝑌𝑡−𝑝 +  𝜃(𝛾, 𝑥, 𝑐)[𝛽0 +  𝛽1 𝑌𝑡−1 + …  +  𝛽𝑝 𝑌𝑡−𝑝] +  𝜀𝑡 (1) 

where 𝑌𝑡 – variable of interest (univariate time series); 

 𝑌𝑡−1, 𝑌𝑡−2, … – lags of this variable; 

 𝛼𝑖 and 𝛽𝑖, (𝑖 =  1, … , 𝑝) – autoregressive parameters; 

 𝜀𝑡  – random error component with an assumption to be 𝜀𝑡~𝑛𝑖𝑑(0, 𝜎2); 

 𝜃(𝛾, 𝑥, 𝑐) – nonlinear transition function having values from the interval [0; 1]; 

 𝛾 – smoothness parameter (can be two parameters); 𝑥 is a threshold variable;  

 𝒄 – threshold (can be two thresholds). 

So, the model describes a gradual switching between the regimes shown by formulae (2)-(3): 

Regime 1:   

 𝑌𝑡  =  𝛼0 +  𝛼1 𝑌𝑡−1 +  …  +  𝛼𝑝 𝑌𝑡−𝑝  (2) 

Regime 2:   

 𝑌𝑡  =  (𝛼0 +  𝛽0) +  (𝛼1 +  𝛽1) 𝑌𝑡−1 +  …  +  (𝛼𝑝 +  𝛽𝑝) 𝑌𝑡−𝑝  (3) 

As the smoothness parameter 𝛾 increases, the transition from one autoregressive equation to another 

and back becomes faster. The threshold variable can depend on one or more lags of the dependent 

variable (𝑌𝑡−1,…), its differences (∆𝑌𝑡−1), the time variable or some other exogenous variable, possibly 

with lags. 

The Logistic Smooth Transition AutoRegressive (LSTAR) model has the transition function (4):  

𝜃(𝛾, 𝑥, 𝑐) =  [1 +  𝑒−𝛾(𝑥−𝑐)]
−1

. (4) 

The Exponential Smooth Transition AutoRegressive (ESTAR) model has the transition function 

(5):  

𝜃(𝛾, 𝑥, 𝑐) =  1 − 𝑒−𝛾(𝑥−𝑐)2
, 𝛾 > 0 (5) 

The second order Logistic Smooth Transition AutoRegressive (LSTAR2) model has the transition 

function (6): 

𝜃(𝛾, 𝑥, 𝑐1, 𝑐2) =  
1

1 +  𝑒−𝛾(𝑥−𝑐1)(𝑥−𝑐2)
. (6) 

The typical shapes of these functions are shown in Fig.1 
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With increasing of the smoothness parameter γ, LSTAR tends to the SETAR model, ESTAR tends 

to the linear regression model, and LSTAR2 also tends to SETAR. The LSTAR transition function 

changes its values from 0 to 1 (and vice versa) passing the threshold. The ESTAR transition function 

temporarily falls from 1 to 0 passing the threshold and returns. The LSTAR2 transition function never 

distinguishes 0. Its minimum, when the threshold variable passes the threshold, is between 0 and 0.5. 

So, the regime of LSTAR2 in the threshold is  

 𝑌𝑡  =  (𝛼0 +  min
𝑥

𝜃 ∙ 𝛽0) +  (𝛼1 +  min
𝑥

𝜃 ∙ 𝛽1) 𝑌𝑡−1 +  …  +  (𝛼𝑝 +  min
𝑥

𝜃 ∙ 𝛽𝑝) 𝑌𝑡−𝑝  

while  

 𝑌𝑡  =  (𝛼0 +  𝛽0) +  (𝛼1 +  𝛽1) 𝑌𝑡−1 +  …  +  (𝛼𝑝 +  𝛽𝑝) 𝑌𝑡−𝑝  

in the opposite regime. 

The offered asymmetric smooth transition function (ASTAR) is given by formula (7). 

(𝑐, 𝑥, 𝛾1, 𝛾2) =  1 −
1.5

1 +  0.5𝑒−𝛾1(𝑥−𝑐) +  0.5𝑒𝛾2(𝑥−𝑐)
 (7) 

It is dependent on the threshold variable 𝑥 (for example, 𝑥 =  𝑌𝑡−1), some threshold value c, which 

is usually an unknown parameter that should be estimated, and two smoothness parameters 𝛾1, 𝛾2 which 

also should be estimated. Fig.2 shows the behaviour of the ASTAR transition function for different pairs 

of 𝛾1, 𝛾2 values and c = 0. As we can see from the graph, if 𝛾1 is large, but 𝛾2 is small, the first transition 

is faster, the second is much slower (in the case of the continuous purple line). The dashed purple line 

shows the opposite case. 

The parameters 𝛾1, 𝛾2 should be of the same sign for the function value to be between 0 and 1, 

which is obligatory for a transition function. If both 𝛾1 and 𝛾2 are negative, then 𝛾2 refers to the first 

transition and 𝛾1 to the second. The ASTAR transition function may not reach 0 fully under some 

smoothness parameters similar to LSTAR2. Its minimum is between 0 and 0.25. The imperfection of 

this function is a small shift of the minimum from x = c when 𝛾1 ≠ 𝛾2, which is not significant while 

the difference between 𝛾1 and 𝛾2 is not unreasonably huge. 

The STAR models are typically estimated using conditional least squares. For a given set of 

parameters (thresholds and smoothness) of a transition function, the regime-specific coefficients can be 

estimated using Least Squares. The parameters of the transition function are identified through the grid 

search, minimizing the residual variance. It is 2-dimensional for LSTAR and ESTAR, and 3-

dimensional for LSTAR2 and ASTAR. Nonlinear optimization is conducted using the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) algorithm. So, all the parameters of the chosen model can be estimated using 

the given time series. The estimation and its difficulties are described by Terasvirta [3]. Terasvirta 

underlined [3] that even if the convergence is reached by estimating the parameters, then also the 

model’s validity must be assessed. Because of the existence of local minima, especially if the time series 

  

Fig. 1. Transition functions of STAR models: 

LSTAR(c = 3,γ = 1), ESTAR(c = 3,γ = 1), 

LSTAR2 (c1 = 1.5, c2 = 4.5, γ = 1) 

Fig. 2. Transition function of ASTAR models 

with different smoothness parameters 

(γ1 = g1, γ2 = g2) 
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is relatively short, it should be considered whether the estimates look reasonable. Autocorrelation of 

residuals should be inspected to choose the full and the most parsimonious model.  

For the choice between STAR models, Terasvirta proposed a test [3], initially for the choice 

between LSTAR and ESTAR, based on the expansion of a transition function into the Taylor series by 

powers of a threshold variable and testing the coefficients near different powers using usual F-tests. 

Later, the test was extended including the LSTAR2 model [6]. Considering the similarity between 

LSTAR and ASTAR in powers of the threshold variable, one can assume the possible choice of ASTAR 

when Terasvirta test indicates LSTAR, but different switching rates can be economically explained. 

To illustrate the usefulness of the STAR model with the developed asymmetric transition function, 

the publicly available data on the employed in Latvia in the age from 15 to 74 (in thousands) published 

by the Central Statistical Bureau are used [11]. The data are taken for the period from January 2002 to 

January 2025, and they are seasonally adjusted. The growth of employment (or decrease, if negative) is 

considered in this study.  

Inspecting the shape of the growth data in Fig.3, we notice that the series has a gradual decline and 

returned during the years of large recession. It looks like nonstationary, with at least one break, may be 

several. Such heterogeneous dynamics may require a threshold model with a smooth transition. 

 

Fig. 3. Employment growth in Latvia (in thousands) (2002M2-2025M1) 

Results and discussion 

The data are found to be stationary with a break according to the Zivot-Andrews test with a potential 

break in April 2008. Analysis of correlations indicates dependence on the four previous values. Out of 

linear models, the seasonal autoregressive moving average SARIMA(3,0,4)(0,0,1)12 model with zero 

mean is the best, despite it being rather long. The linear autoregressive model with four lags AR(4) with 

zero mean is found to be the best nonseasonal ARIMA model.  

According to the Terasvirta (1994) test, linearity is rejected (with p-value = 0.00025) and the 

LSTAR type model is chosen as the recommended STAR model. However, the best model of each type 

(LSTAR, LSTAR2, ESTAR, ASTAR, SETAR) is found for the employment growth for the comparative 

analysis.  

The evaluation of the chosen STAR model and its implementation in the used software technically 

is not straightforward. In the publicly available R software, the popular package tsDyn [12] for nonlinear 

time series models with regime switching provides the function lstar() for evaluation of the LSTAR 

model only with no other transition functions. If a different transition function should be used, a new 

estimation function should be created. Fortunately, R is software with an open code, so the lstar() 

function can be used as a basis for new functions. In addition to the LSTAR2 estimation procedure 

previously developed in this way, the new function for estimation of ESTAR is built for this study, and 

then the function for the asymmetric ASTAR model as well. Various modifications of the lstar() 

function were made for this purpose. LSTAR is of sigmoid type, but the rest functions are of ‘v’ type, 

which demanded the changes. Also, the number of thresholds and the number of smoothness parameters 

needed correction, which also influenced the creation of the Jacobian matrix used for optimisation of 

the parameters of the model. Then, the related prediction function required adjustment. 
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The first lag of the employed growth is used as the threshold variable in all estimated models. 

Maximum four lags are used in regime equations, which appeared the best choice. The STAR models 

are found to be better if only two lags are taken in one of the regimes. 

Table 1 shows the comparison of the built models for the employment growth with Akaike 

Information Criterion (AIC), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error 

(MAPE) for their in-sample forecast, and the residual variance. ASTAR seems to be the best having the 

least RMSE (2.36292), MAPE (117.5%) and the residual variance (5.502), LSTAR is the best of the rest 

having the least AIC (488), the second largest RMSE (2.37068), MAPE (118.1%) and the residual 

variance (5.539), and all STAR models are superior to the linear autoregression having the largest 

AIC(1284.9), RMSE (2.43912) and the residual variance (5.894). Only AIC of ASTAR (489) is a bit 

worse than for LSTAR (488), which can be explained by the fact that ASTAR has one more estimated 

parameter (two smoothing parameters in place of one). All the compared models are tested to be valid, 

not having unit roots.  

Also, the other characteristics of the models are tested including the significance of the estimated 

coefficients. AR(4) has all the parameters being highly significant, but STAR models – most of them. 

Unfortunately, the significance of the smoothness parameters in ASTAR, LSTAR and LSTAR2 is not 

high, while the threshold estimates are very significant. Only the ESTAR model has all its coefficients 

significant, including 𝛾 and the threshold. Moreover, 𝛾 is not large (0.83), which implies a slow 

transition. ASTAR estimates of 𝛾1, 𝛾2 are 0.11 and 11.26 respectively, which are rather different, so the 

pace of transitions in different directions differ. The estimated threshold of ASTAR is -4.76, which 

means that if a decrease in employment is 4.76, the model is the most different. 

Table 1  

Comparison of models with AIC, RMSE, MAPE, and the residual variance 

Model AIC RMSE MAPE Residual Variance 

AR(4) 1284.9 2.43912 - 5.894 

SETAR(4,4) 497 2.37485 124.3% 5.803 

LSTAR(2,4) 488 2.37068 118.1% 5.539 

LSTAR2(4,2) 500 2.41127 123.2% 5.73 

ESTAR(4,2) 497 2.40734 122.1% 5.711 

ASTAR(4,2) 489 2.36292 117.5% 5.502 

Table 2 shows the comparison of out-of-sample forecast RMSE for different horizons. Root Mean 

Squared Error of forecast with the ASTAR model appears the least on average (1.994), despite it is not 

the best for most of the horizons, pointing to the best prediction ability on average among the tested 

models for employment growth. This suggests that the forecast made with ASTAR can be more realistic. 

Table 2 

Comparison of RMSE of out-of-sample forecasts of the models for different forecast horizons 

Model/Forecast Horizon 4 6 9 12 Average 

AR(4) 0.96744 1.24257 2.69365 3.62306 2.13168 

SETAR(4,4) 1.28203 0.78191 2.93934 3.04262 2.01147 

LSTAR(2,4) 0.98241 0.8505 2.78324 3.41134 2.00687 

LSTAR2(4,2) 1.38436 0.82455 2.75560 3.81761 2.19553 

ESTAR(4,2) 1.07926 1.19654 2.69783 3.60155 2.1438 

ASTAR(4,2) 1.32327 0.88371 2.80977 2.95943 1.99405 

Conclusions 

1. This study introduces the Asymmetric Smooth Transition Autoregressive (ASTAR) model, which 

improves traditional STAR models by introducing an asymmetric transition function. Unlike 

popular LSTAR and ESTAR models, ASTAR permits different transition speeds in opposite 
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directions, making modelling economic data with structural shifts more flexible. The ASTAR 

model estimation tool has been obtained by modifying the LSTAR estimation procedure in R, which 

allows for a direct comparison with existing STAR models.  

2. Empirical analysis of Latvian employment growth data demonstrates that ASTAR provides a better 

fit compared to traditional STAR models, which appears in lower RMSE (2.36292), MAPE 

(117.5%), and residual variance (5.502) values, as it is shown in Table 1. Although the ASTAR 

model has an additional smoothness parameter, resulting in a slightly higher AIC (488), its ability 

to model asymmetric regime shifts results in improved forecasting performance. These results 

underline the importance of accounting for asymmetric transitions in economic modelling. By 

allowing for different transition speeds, ASTAR offers a more precise representation of economic 

fluctuations, improving theoretical understanding and practical forecasting applications.  

3. Future research could explore its application to other economic and financial indicators and improve 

estimation techniques. The limitations for parameters could be implemented more effectively. The 

characteristics of the newly introduced asymmetric transition function require a more thorough 

analysis with possible adjustments if needed. 
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